
Warning! This zine is a WIP!

Thank you for taking interest in our zine! Feel free to take a look aroud,
but remember: this is a very early draft. Let us know what you think on
our socials, or by mentioning #FujoGuide.

Tumblr

Twitter

Mastodon

Like what you see? Back our kickstarter!

https://fujowebdev.tumblr.com/
https://twitter.com/fujowebdev
https://blorbo.social/@fujowebdev
https://www.kickstarter.com/projects/essential-randomness/1403488?ref=73cd96&token=e7a83e1e

From the Author

I wrote this book as I was
learning version control. It
was very difficult to stay
focused, but the hot men
helped.

Forgive the typos and
TODOs, they'll be fixed in the
final edition. I only had two
months to put this whole
thing together (lol).

You can leave feedback at
[TODO].

— Boba-tan

The story so far...

After getting isekai'd to a
weird world where web
development concepts are
suddenly hot, Boba-tan has
finally settled in at her new
place in Localhost HQ .

There's no time to relax
though because a new
danger already looms at the
horizon: deadlines.

The Characters

Terminal

Git

GitHub

Guest Starring

HTML

CSS

ARIA

Table of Contents

Chapter 1: Meet Git

>_ Disaster Strikes for Boba-tan!

>_ Introducing Git

>_ Git & Version Control Systems (VCS)

>_ Saving & Moving Through Your Code History

→ The Gi(s)t

Repositories: Where Your Code Lives

Commits: Code Checkpoints Made Easy

Putting It Together

→ Coming Soon: Git History

Log: Your Code Diary

Checkout: A Quick Dip Into The Past

Reset: Time Travel At Your Fingertips

>_ Working In Parallel

→ The Gi(s)t

Branches: A Multiverse For Your Code

Merge (Rebase): Bringing The Timelines Back
Together

Fixing Merge Conflicts

Bonus: Different Types Of Merge

Putting It Together

Coming Soon: Chapter 2: Meet GitHub

>_ Comic

>_ Introducing GitHub

>_ Understanding Remotes

→ What Is A Remote

→ Why You Should Use A Cloud Hosted VCS

→ Why We Chose GitHub & Alternatives

→ The Gi(s)tHub

Push: Upload Your Work To The Cloud

Pull: Get Your Work Back From The Cloud

Clone: Start It All Over Again

→ Harnessing the Power™

Automatic Deployment

GitHub Actions

>_ Collaborating With Others

→ How Cloud-Hosted VCS Fosters Collaboration

Forking: Customize Your Own Software

Pull Requests: Working In A Community

Templates: Help Others Get Started

[BONUS] When Git Gets: Mad Recovering From Failure

[BONUS] Commands Reference

[BONUS] Glossary

Chapter 1:
Meet Git

Introducing Git

Photographic Memory
Git can easily remember all
changes to your code, as well
every real or perceived slight he's
received.

Conflict Resolution
Git is adept at resolving conflicts
across file changes. But watch out:
he can be prone to anger when
things don't go as planned.

#Committed
Committing often is one of the
most effective ways to stay in Git's
good graces.

Git & Version Control Systems (VCS)

Git and other Version Control Systems help you edit your code
with confidence by making it much harder to irrevocably mess up
your programs. They allow you to revisit multiple versions of your
code as they existed at previous points in time and work on many
features and improvements in parallel without losing access to
older working version of your code. VCSs also allow multiple
people to work on the same code without fear of overwriting each
other's changes.

As you familiarize yourself with Git, you’ll be able to:

Move back and forth through the history of your code,
comparing previous versions and (potentially) restoring edited
or deleted files.

Work on separate features in parallel, merging them into the
main version of your code once they’re ready.

Figure out when an error was first introduced and what
change was the culprit.

TODO: should we call out “source
control” and “source code” as
terminology that might be
frequently mentioned and unclear?

In the next section of this guide, you’ll also learn how GitHub (a
cloud-based Version Control System based on Git) can help you
back up your code, share it with others, and collaborate together.

While many—not all!—experienced programmers use Git through
its command line interface (Terminal), more visual and interactive
options are also available. You can explore our current
recommendations on our companion website. [TODO: add link]

(Callout, character TBD) Despite being most often associated with
software development, Version Control Systems can be used with any
type of file: whether it’s the evolving text of a future fanfiction, different
versions of the same image file, or any edit to a set of files over time,
version control can help you permanently keep track of changes.

Should I use Git through the command line or a
visual interface?

Command Line Interfaces (CLIs) are very popular with experienced
programmers! While they might seem scary at first, they only require
learning a small handful of commands to be used effectively and can
be faster and more powerful than Graphic User Interfaces (GUIs).

You don't need to start your programming journey by using a CLI, nor
do you ever need to use one if a GUI is available for your program of
choice. However, as you progress in your journey, you may encounter
programs that require one.

He was cooking.

Don't be

afraid, Ms

Boba-tan.
I'm not

scary at all,

haha.

Saving & Moving Through Your Code History

The Gi(s)t

Why is version control such a big deal when you can simply save a
file? Although saving a file is a useful action on its own, the power
of version control is in keeping an archived history of your changes.

Have you ever:

Rewritten part of an essay or fic, saved, and returned the next
day only to realize the previous version was better?

Merged layers on an image, saved over the unmerged copy,
and not realized it until you reopened the file later?

Had a program crash in the middle of a save so that you can't
undo a change you decide you wanted to undo?

In all of these cases, if you had archived a prior version with version
control, you could restore the prior copy, regardless of the
software's "undo" limitations.

The benefits of version control are so desirable, it is a prominent
feature of cloud hosting services like Google Drive, OneDrive, and
Dropbox. Likewise, Git is a powerful tool with a very long memory!

When this happens, don't panic! Take it one command at a time and
remember: even long-time programmers are always looking up
commands they don't use often—sometimes even those they do!

Repositories: Where Your Code Lives

Before you can take advantage of Git's powerful memory tools, the
directory your code lives in needs to be turned into a repository,
often shortened as "repo".

When you first initialize a Git repository (by running the git init
command or equivalent), a .git subdirectory is created. While you
won't need to interact with it directly, this .git subdirectory stores all
the data related to the history of the changes, as well as the actual
changes made at each step. Without it, a directory is just a
collection of files.

As long as the .git directory remains intact, you can always recover
files that were saved in it, because it keeps copies of all versions of
your files. This is important to know if you're using it for larger files,
as it may make your .git directory very large. Once something is
committed to Git's memory, it will stay forever in the .git directory

TODO: We could add an image of Git
promising never to use his power
for evil - but you sort of don't
believe him.

TODO: Consider using footnotes or
margin notes to point out that
directories and subdirectories are
also called "folders".

unless you specifically remove it from Git's history. This is a more
advanced process that exceeds the scope of this guide, but if you
find yourself needing to do so, we recommend you search the web
for "deleting a file from .git history".

The .git directory is a hidden folder by default, so you may not
always see it unless you change your computer settings. However,
there's nothing mystical about it; you can actually view the folder
both in your file explorer and using the terminal. Although we won't
go into details on that (it's not really necessary to get started), if
you're interested there are other online resources explaining how to
view the contents of your .git directory.

To ask Git to track a directory's history, you run git init in your
CLI.

Commits: Code Checkpoints Made Easy

While Git keeps track of your files' histories for you, this isn't an
automatic process. Instead, Git relies on commits to learn about
new files or changes to existing ones. A commit represents a
snapshot of your code at a certain point in time that Git has
committed to its long-term memory; it's a bit like manually saving
your game just before a boss fight to be able to recover your place
in the game. You can create a commit using the git commit
command.

If you're ever unsure of what Git is tracking, you can check the
status of your repo with git status . When there are no changes,
Git responds to the command to let you know. When a new file has
been added, because it has never seen this file before, Git shows
the file name in red and will advise the file is untracked. Files that

Git is already tracking which have modifications since the last
commit will show in green.

You can use the git add command to tell Git about the new files or
changes that you wish to include in the next commit. This process is
called staging. Since commits will only include changes that have
been explicitly staged, you can easily separate unrelated files and
commit them on their own. This makes your code history easier to
understand and move around.

Staging the untracked red files mentioned before updates them to
green and labels them as "new file" when you run git status
again, indicating that Git is aware of them now.

Staging changes to HTML files.

Once you're ready for Git to store these changes to its memory, you
would run git commit . Commit frequently in order to prevent
potential loss of changes!

In most GUIs, a commit is represented with the circle symbol, while
in a command line interface it is usually represented with an *
unless you use certain options known as flags. More information
about these flags appears in the section titled "Log: your code
diary" and on our Git Cheat Sheet.

There may be times when you want to exclude certain files and
folders from Git's memory. These might be files and folders with
sensitive information, such as access keys, passwords, or user data.
You can tell Git to ignore these files by creating a .gitignore file. This
is especially important if you use a remote hosting service like
GitHub and have your repository set to public. More information on
.gitignore can be found in Chapter 2: GitHub.

Putting It Together

Imagine you're creating a new website for yourself and don't want
to suffer the same misfortune as poor Boba-tan. You wisely decide
to enlist Git's help before disaster strikes. In general, your workflow
for your new project is:

TODO: insert sketch of Git saying
he's not afraid of commitment.

1. Initialize the repo.

2. Create files, delete files, and make edits.

3. Stage the files.

4. Check status to verify staging.

5. Commit.

6. Go back to 2.

Note: once you start working with branches (discussed in
"Branches: A Multiverse For Your Code"), this workflow
changes slightly!

After opening your terminal and navigating to the folder where you
want to store your repo (see our "Command Line Tips" for help) you
run:

> git init my-website
Initialized empty Git repository in ~/my-website/.git/

This will both create the directory called "my-website" AND ask Git
to track it for you. You could also create the directory yourself in any
way you're familiar navigate your terminal into the already existing
directory, and then run git init.

Now that you've got your repository initialized, you begin to build
your website. First, you create a file called "index.html" to serve as
your homepage. You spend some time working on it and saving as
normal in your code editor, and then decide to take a break for
lunch.

When it's time to start working again, you can't remember if you've
asked Git to track the index.html file yet. You decide to check, so you
move to your terminal and run:

> git status
On branch main
No commits yet
nothing to commit (create/copy files and use "git add" to
track)

You realize this means you haven't tracked index.html yet! You're
about to start some major updates to the content and decide that
you should probably save all your changes so far. You run:

> git add -A

Using the -A flag stages all the files in your directory that have had
changes made to them. For more useful flags, see the Git Cheat
Sheet! Now that Git knows about the files you've added, you're
ready to commit.

You'll first verify that your files are staged correctly by running:

> git status
On branch main

No commits yet

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)
 new file: index.html

Now that you've confirmed, you are ready to commit! You run:

> git commit -m "Initial commit."
[main (root-commit) e350e8c] Initial commit.
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 index.html

You've committed your first archive of your files to Git's memory!
Every commit should have a commit message to accompany it
which summarizes what you've done. Check out our "Tips for
Commit Messages" cheat sheet.

How often should I commit?

There's no hard and fast rule for how often you should commit! It
varies based on the project and your own personal preferences.
Generally, it's a good idea to commit after you've completed a self-
contained but significant change, such as successfully creating a new
small feature or resolving a frustrating bug.

Don't worry about committing too frequently. Not only are small
commits easier to understand and review, but it's easier to combine
multiple of them together ("squashing") than it is to try to split ones
that are too large!

...To Be Continued

Credits

Project Lead/Director

Ms Boba

Producers

To be done!

Project Organizing

Ms Boba

Enigmalea

Slogbait

Content Designer

Ms Boba

Technical Writer

Enigmalea

Ms Boba

Heidi

Editor

Enigmalea

Art Directing

Jack @brokemycrown

Character Design

Jack @brokemycrown (Git, GitHub)

Sgt-Spank (Aria)

spillingdown (Terminal)

ymkse (HTML, CSS, Boba-tan)

Additional Art & Layout

AmkiTakk

Cat Bathing Sun (Graphic Design)

Catterbug

Kiwipon

SCUMSUCK

Slogbait

Social Media & Marketing

Owl

Thebiballerina

QA Testing

Citro

CMDonovann

Elendraug

Enigmalea

Michelle

Yuu

Sensitivity Reading

Moon (AdmiralExclipse)

Miscellanium

Catboy Wrangler

Michelle

Lead Research

Elf Herself

Yuu

Additional Research, Feedback,
Development, and Assistance

Candle

Citro

CMDonovann

Elendraug

Ererifan915

MadGastronomer (Event Planning)

Mantra

Michelle

Noclip

Pamuya

Playerprophet

SCUMSUCK

Thunder the Wolf

Tovanish

wilde_stallyn

